Final Exam

ISI BANGALORE

May 2021

100 Points

DIFFERENTIAL GEOMETRY II

Notes.

(a) The duration of this exam is three hours.

- (b) You may freely use any result proved in class or in the text-book. Justify all other steps.
- (c) \mathbb{R} = real numbers, $\mathbb{R}P^n$ = real projective *n*-space.
- 1. [24 points] Let N be a regular submanifold of M.
 - (i) Prove that there exists an open subset W of M such that N is a closed subset of W.
 - (ii) If N is closed in M prove that every C^{∞} function $f: N \to \mathbb{R}$ extends to a C^{∞} function $\tilde{f}: M \to \mathbb{R}$.
- (iii) Give a counter-example to (ii) when N is not a closed subset, i.e., find a regular submanifold $N \subset M$ with $f: N \to \mathbb{R}$ a C^{∞} function that does not extend to a C^{∞} function on M.

2. [16 points] Prove that every C^{∞} vector field on the unit sphere $S^{n-1} \subset \mathbb{R}^n$ extends to a C^{∞} vector field on \mathbb{R}^n .

3. [20 points] Let \mathcal{E} denote the subset of $M := \mathbb{R}^{n+1} \times \mathbb{R}P^n$ given by

$$\mathcal{E} = \{ (p,q) \in M \mid p = 0 \text{ or } q = [p] \}.$$

(In other words, (p,q) is in M exactly when p lies on the line denoted by q.) Let $\pi: \mathcal{E} \to \mathbb{R}P^n$ be the natural projection $(p,q) \to q$.

- (i) Prove that $(\mathcal{E}, \mathbb{R}P^n, \pi)$ is a vector bundle of rank 1 and exhibit an open cover $\{U_i\}_{i \in I}$ of $\mathbb{R}P^n$ over which \mathcal{E} is trivial, i.e., specify an isomorphism of bundles $\phi_i \colon \mathcal{E}_{U_i} = \pi^{-1}U_i \xrightarrow{\sim} \mathbb{R} \times U_i$ for each $i \in I$.
- (ii) Let n = 1. Let U_i, ϕ_i be as in (i). For any $p \in U_i \cap U_j$ identify the map $\phi_j \phi_i^{-1}(p) \colon \mathbb{R} \to \mathbb{R}$.

4. [20 points] Let X be a symmetric $n \times n$ matrix over \mathbb{R} . Let \tilde{X} denote the left-invariant vector field on the orthogonal group O(n) such that $\tilde{X}_I = X$, i.e., the value of \tilde{X} at the identity matrix I is X.

- (i) Identify \tilde{X}_A for any $A \in O(n)$.
- (ii) Find the maximal integral curve to \tilde{X} starting at I.
- (iii) For $A \in O(n)$, find the maximal integral curve to X starting at A.

5. [20 points] Let $f(x^1, \ldots, x^{n+1})$ be a C^{∞} function on \mathbb{R}^{n+1} such that $W := \{f = 0\}$ is a regular level set.

(i) Construct a nowhere vanishing n-form on W by verifying that for

$$\omega_i := (-1)^{i-1} \frac{dx^1 \wedge \dots \wedge dx^i \wedge \dots \wedge dx^{n+1}}{\partial f / \partial x^i},$$

we have $\omega_i = \omega_i$ whenever they are both defined. (Here $\hat{}$ over dx^i means that dx^i is omitted.)

(ii) Show that for every i with $1 \leq i \leq n+1$, there exists a nonzero *i*-form on \mathbb{R}^{n+1} whose restriction to W is 0.